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SUMMARY 

HOMTY, a code for Large Eddy Simulation of homogeneous isotropic turbulence is proven by 
successful simulation of two experiments. The role of each term in the equations of motion and the 
concept of filtering is examined. It is shown that ‘pretiltering’ is unnecessary, and the resulting 
additional term in the equations, instead of transferring energy to the subgrid scales, backscatten 
energy from the resolved large wavenumbers to the small ones. The kinetic energy decay exponent is 
shown to depend on the low wavenumber part of the velocity spectrum. Pressure statistics are 
computed and found to be in agreement with previous computations. 
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1. INTRODUCTION 

Large Eddy Simulation (LES), the method in which the flow-geometry-dependent large scale 
turbulent motions are explicitly computed while the small ones-expected to be universal- 
are modelled, is now an established term in computational fluid dynamics. A review of the 
current state of the art is given in Reference 1. 

The most direct and flexible simulation is by integration of the 3-dimensional time 
dependent Navier-Stokes equations, the differential operators of which are approximated by 
finite difference schemes. By its very nature the finite difference scheme (or for that matter 
any other technique using a digital computer) cannot resolve scales smaller than the 
computational grid spacing h. Whilst the raw Navier-Stokes and continuity equations 
describe fields which are continuous in space and time, the fields processed by the simulation 
are discrete. Therefore smoothed (‘filtered’) fields are resolved, the filtering being imposed 
by the discretization and the particular numerical scheme used. The effects of the unresolved 
scales (also known as subgrid scales (SGS)) must be modelled in terms of the resolved 
variables. 

There have been two approaches to the definition of the resolved field. Leonard2 defined a 
new field of filtered variables f by convolution of each variable f of the original field with a 
filter function G(x). 

f(x, I )  = G(x-r‘)f(i,  t )  dx’ 
I r p a a  

Application of (1) yields a new set of equations, describing fields continuous in space and 
time. The f(x, t )  are regarded as the computed variables at the discrete points of the 
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computational grid. The other approach is to define the resolvable variables f at the discrete 
grid points ( x l ,  x2, xj) only, as averages over  volume^.^,^ 

r , + h l 2  x ,+h/2  x,+h/2 

f =‘ I 1 dxl dx2 d x d x , ,  x2, x d  (2) 
h 3  , -N2  r h l 2  , -hR 

Let f ’  be the unresolved part of f. Then after an applibtion of either of the operations (1) 
or (2) .  both of which will be denoted by an overbar, on the continuity and Navier-Stokes 
equations and subsequent substitution of, 

the new equations read 

aii, a a* a ap -+- yy - V? ii, +- R, = -- 
a t  ax, ax, a% I a& 

where R,, are the subgrid scale stresses which must be modelled, 4, i = 1 , 2 , 3  are the 
fluctuating velocity components, p is the kinematic pressure, v is the kinematic viscosity and 
the summation convention is used. 

In the volume balance procedure it is evident that - 
c,q = Qq (7) 

u;q. = quj = 0 (8) 
With the prefitering procedure (7) and (8) are, in general, not true as Leonard’ pointed out. 
For the top-hat and the Gaussian filters (see next section) he has shown that, 

- -  

G=&G,+-V A 2  2 - -  ( ~ u , ) + O ( A ~ )  
24 (9) 

where AA is the filter width and the second term in (9) is known as the Leonard term. With 
this approach the Comte-Bellot and Corrsin experiment’ on near isotropic turbulence was 
simulated successfully by Kwak ef al.‘ who used a centred grid. A filter width A A  > h was 
found to be necessary, the optimum being about AA = 2h. 

The main objective of the present work is to examine the concept of filtering. In our LES 
code (HOMTY) the Leonard term is included and the final equations read. 

a&iaxi = o (10) 

ap +FvV2ii, -- 
a*, 

v, = (CA,)2(2S,iS,,)’/2 (13) 
FL, F are flags switching the relevant terms to ‘on’ or ‘off. It will be seen that the subgrid 
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scale stresses R,,, responsible for the energy transfer to the subgrid scales, are represented by 
an eddy viscosity model and the Smagorinsky’ model is used for the eddy viscosity. 

For the case of homogeneous isotropic turbulence treated by H O W ,  periodic boundary 
conditions are assumed at the surfaces of the computational cubic box with side L =Nh. 
Details of the finite difference schemes are given by Antonopoulos-Domis and Love.’ Here 
we briefly record that a staggered grid is used and that two versions of HOM’TY have been 
tested. In the first the terms d(&ii,)/dx., and dij/dx, are approximated to the 4th order and al l  
other terms to the 2nd. In the second version all terms are approximated to the 2nd order. 
Both versions gave practically the same results. 

The near isotropic velocity fields of the Comte-Bellot and Cornin’ and of the Yeh and 
Van-Attag experiments are used as test-beds for the simulation. From now on the former is 
abbreviated to CBC and the latter to W A .  In the W A  experiment the turbulence- 
producing grid was heated, but the temperature fluctuations were kept sufficiently small for 
buoyancy forces to be negligible. 

The kinetic energy decay reaches an asymptotic state in the simulation and this is 
compared with the ‘final period of decay’.’’ The dependence of the kinetic energy decay rate 
on initial spectra is examined. The contribution of each term in (11) to the evolution of the 
velocity field is investigated and finally statistics of the pressure fluctuations are computed. 

2. FILTERED VARIABLES 

Whichever procedure is used the simulated fields are approximations, and should be 
compared, to smoothed (‘filtered’) versions of the experimental fields. To distinguish be- 
tween the volume and the filtering procedures we use the terms ‘filtered’ for variables 
derived with the former and ‘prefiltered’ for variables derived with the latter. Accordingly 
Leonard’s formalism is referred to as ‘prefiltering’. On the merits of the different filters 
considered in prefiltering see Reference 6. The most commonly used are the Gaussian, 

G (x) = exp { -6$/A3 (14) 

and the top-hat filter 

Their 3-dimensional Fourier transforms are 

Gaussian G(k) =exp {-k2A:/24} 

top-hat G (k) = B( klAA)B(k2A4)B(k3AA) 

B(y) =sin (y/2)/(~/2) (18) 

It can be readily seen that the filter inherent in the volume balance procedure is the 
top-hat with A, = h =mesh spacing. The Gaussian filter is isotropic, whilst the top-hat is not. 
Quarini” computed the isotropic component Go(k) and the anisotropic higher harmonics of 
the top-hat (Figure 1) showing that the anisotropy is weak. In Figure 1 the Gaussian G(k)  
with A,= h is plotted for comparison with the top-hat. It is clear that, up to the maximum 
wavenumber k,,= a J 3 / h  that can be resolved by the simulation, their difference is for all 
practical purposes conceptual rather than real. 
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Figure 1. Comparison of filters. - isotropic compo- 
nent Go of top-hat, - - - - -  harmonic GY of top-hat, 

x x x x x Gaussian 

The 3-dimensional filtered energy spectra %(k), to be compared with those of the 
simulation are obtained from the raw experimental ones E,,,(k) as, 

&k) = E,&) lG(k)I2 (19) 

and the filtered kinetic energy as, 

O * S ( f i T )  = p ( k )  dk 

where ( ) denotes an average over the whole computational box. The longitudinal integral 
scale and Taylor microscale h are computed as, 

r -  

k-'B(k) dk L=- - 3 J 0  

Io-B(k)dk 

3. RESULTS 

3.1. Volume balance procedure-simulation of experiments 

The Leonard term was lint switched 'off (FL = 0). The molecular viscosity term was also 
switched 'off (F=O)  which is equivalent to lumping the difference into the subgrid term 
(eddy viscosity). The effect of so doing is discussed in section 3.2. 
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Table I. Characteristic parameters of the laboratory experiments 

Cornte-Bellot and Yeh and Van-Atta 
Cornin experiment experiment 

Free stream velocity 
Uo (misec) 10.0 4.0 

Grid spacing M (mm) 50.8 40.0 

R, = ulUv 71.6 35.2 
Kolmogorou microscale 

R M  = UOMIV 3.3 lo4 1. 104 

q = ( v ~ / E ) ” ~  (mm) 0.29 0.53 

The initial velocity field, which must obey the continuity condition, is derived in HOMTY 
from a random Gaussian field; any prescribed 3-dimensional spectrum can be imposed. For 
the simulation of the CBC experiment the filtered experimental spectrum (d. (19) with 
A A = h )  at station xoJM=42 was imposed; M is the mesh spacing of the turbulence- 
producing grid and x the distance downstream from the grid. For the simulation of the YVA 
experiment the 3-dimensional spectrum at n,/M = 25 was imposed. The characteristic 
parameters of these experiments are given in Table I. 

Considering a co-ordinate frame convected with the mean stream velocity V,, laboratory 
measurements at a distance x - x o  downstream from the station xo correspond to our 
simulation results at time t, = nAt = (n -xo)/Vo; n is the number of time steps and A t  the 
time step of the computation. For comparision with the laboratory results we present our 
results at stations x/M rather than the computation time t,. 

A small mesh size h is desirable, to include in the simulation as much as possible of the 
high wavenumber part of the spectrum (kmm = ~ J 3 / h ) .  On the other hand L = Nh, N being 
the number of grid points in any one direction, must be large enough to include the 
important part of the large scales (k- = 2r/L). In this simulation h was put equal to 15 mm 
for the 1(i3 runs and to 10mm for the 323 runs. 

The model parameter C (equation (13)) is known to depend on a subgrid scale Reynolds 
number Rscs and at low RsGs it can be determined without recourse to experiment.’*12 
Alternatively it can be determined by tuning C to match the simulated kinetic energy decay 
with that of a particular experiment.6 The latter procedure was used here and the value of C, 
so obtained, was found the same for both, the CBC and W A ,  experiments namely 

C = 0.23 (23) 

In Figure 2 the simulated and experimental decay of (ii’) are compared for the runs; C 
was found to be.independent of the size of the mesh spacing. The 3-dimensional velocity 
spectra are presented in Figures 3 and 4 for the CBC experiment and in Figures 5 and 6 for 
the W A  experiment. It can be seen that the agreement of the simulated with the filtered 
experimental spectra is excellent; it is particularly encouraging the fact that HOMTY 
predicts the spectra at the relatively long time required to reach the station x/M = 171 of the 
CBC experiment. 

Lilly assuming that the mesh spacing h lies within the inertial subrange, calculated the 
rate (T) at which the Smogorinsky model transfers energy to the subgrid scales. Equating (T> 
to the dissipation rate ( E )  he obtained theoretical predictions of C. Considering continuous 
space configuration he obtained the value C = 0.18. On the other hand, approximating the 
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Figure 2. Decay of q =0-5(u?),  (C = 0.23, h = 15 mm), x x x X simulation of the CBC 
experiment, OOO simulation of the W A  experiment, - filtered exmrimental. - - raw 

experimental 

, , \ ,  , , -  .1 ' 
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Figure 3. Three-dimensional spectra of the CBC 
experiment, 163 (h = 15 nun) run, x x x x simula- 
tion at x/M = 98, WW simulation at x / M  = 17 1, 

- filtered experimental 
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Figure 4. Three-dimensional spectra of the CBC 
experiment, 32' ( h  = 10 mm) run, x x x x simula- 
tion at x/M = 98, VVV simulation at x/M = 171, - 

filtered experimental 
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Figure 5 .  Three-dimensional velocity spectrum of the W A  
experiment, 163 ( h  = 15 mm) run, X X X X X simulation at 

x / M  = 46-6, - filtered experimental 
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Figure 6 .  Three-dimensional velocity spectra of the W A  experi- 
ment at x/m = 46.6, 323 ( h  = 10 mm) run, X X x simulation, - 

filtered experimental 

equations by finite difference formulae (discrete space) and replacing first derivatives by, 

df Sf 1 -A - = - [ f (x + i) - f (x - ;, J dx 6x h 

he obtained the value C=O.23. The difference is significant because it arises solely by 
moving from the continuous to discrete space. Lilly defines his resolved variables by (2) and 
used (7) and (8) consistently, i.e. the volume balance procedure. First derivatives in the 
staggered grid of HOMTY are indeed of the form (24) and so far we have used the volume 
balance procedure. Thus the remarkable verification of Lilly's prediction cannot be fortuitus. 
In his derivation he makes the assumption, 

(25) 

s = &Si, (36) 

(330) = ($)3/2 

Our numerical simulations (both 163 and 323 runs) justify this assumption giving, 

(33/*)/@)3'2= 1.1 (27) 
The kinetic energy in experiments of near isotropic grid generated turbulence is found to 

(u?) - (x/M)-" (28) 
where x is the distance downstream from the turbulence-producing grid with mesh spacing 
M. In a co-ordinate frame convected with the mean stream velocity Vo this is equivalent to, 

uf  - r-" (29) 

decay as, 
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In all experiments n = 1*2*0-25 during the initial period of decay. Batchelor and 
Townsend” considered the last stages of decay during which intertia forces are negligible 
compared with viscous forces; they called this ‘the final period of decay of turbulence’. 
Neglecting inertial forces they predicted an asymptotic decay law with n = 2.5 during the 
final period and verified their deduction experimentally; the final period was reached at 
x\M>400.  

Using the CBC spectrum at x/M=42 as the initial one, we advanced the fields of our 
simulation (163 run including molecular viscosity term) up to 250 time steps with t =  
0.01 seclstep which is equivalent to x/M = 542 in the CBC experiment. It can be seen in 
Figure 7 that the simulation reaches an asymptotic state with n = 1.63 at x/m 300. This  
exponent is smaller than the n =2*5 of the ‘final period’. First we should note that the 
exponent in the energy decay of the resolved field is always smaller than that of the raw field 
(Figure 2). Furthermore the dissipation by molecular viscosity within the resolved scales is a 
small fraction of the total; for the present runs with h = 15 mm this fraction is only 5 per 
cent, as is shown in the next section. The rest is provided for by the model (eddy viscosity) as 
energy transfer to the unresolved scales. Therefore the fundamental condition for the ‘final 
period’ that inertial forces are much less than viscous ones, has no chance of validity with the 
coarse meshes to which we are limited except at very low Reynolds numbers with Kol- 
mogorov scales of the order of h. Of coume, by varying (artificially) the ratio of eddy 
viscosity drain to molecular viscosity dissipation, any decay behaviour up to n = 2.5 can be 
obtained. We may conclude that in the simulation we may talk about an asymptotic state but 
not of a proper ‘final period’ as defined by Batchelor and Townsend.” 

Quite apart from this asymptotic state, the decay rate depends, in general, on the form of 
the initial spectrum and in particular on its low wavenumber part. Considering a strongly 
turbulent motion where viscous forces are negligible we may write (with the Smagorinsky 
approximation for eddy viscosity) 
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where F1, F2 are constants and 0 a ‘constant’ to be determined. From these it can be readily 
shown that 

E(k,  t) = E(k ,  0) exp {-F3k2t1-8} (33) 

F3 is again a constant and the dependence of the kinetic energy q, 

q ( t ) = p ( k , t ) d k  (34) 

on the initial spectrum E(k, 0) shape is apparent. Assume for example that, 

E(k, t) = bk“ exp {-F3k2t1-B} (35) 

Since -dq/dt must be equal to E in (32), straightfoward algebra gives 

(36) 

This shows that the smaller m, i.e. the more energy there is in the largest scales the slower 
the decay is and this is what one would have expected, since it is the largest scales which 
decay slowest. Although (36) is derived on the basis of an unrealistic initial spectrum 
E(k ,O)=  bk“, it shows clearly the dependence of the decay exponent on the low 
wavenumber part of the intial spectrum. Schumann and Patterson’’ observed the depen- 
dence of n on initial spectra in their numerical experiments using shapes differing at both low 
and high wavenumbers, namely. 

- t-2(rn+l/rn+7) 

E(k, 0)=Alk4exp{-2(k/kw,)2} (37) 

To investigate the dependence of n on small k’s we used four initial spectra (Figure 8), all 
of them having at large k’s the shape of the CBC spectrum at x /M=42;  the initial energy 
was for all of them that of the CBC at x/M = 42. The resulting exponents n are plotted in 
Figure 9 versus the initial Taylor microscales; the numbering agrees with that of Figure 8. A 
trend of increasing n with decreasing scales can be observed and since the initial energy was 
the same for all of these runs, this figure can be read as n versus RA = uh/v. As expected, 
with the peak of the spectrum moving towards larger k’s the energy decays faster. 

In the W A  experiment the evolution of the integral scales is presented. Clearly the scales 
of the resolved field are larger than the raw ones and the larger the mesh spacing h, the 
larger the computed scales would be. The integral scales of the simulation are compared to 
the filtered experimental ones in Figure 10(a); the agreement is excellent as would be 
expected from the good agreement on spectra. In the same figure the evolution of computed 
Taylor microscales of the W A  experiment is presented and Figure 1O(b) gives the scales of 
the CBC experiment as obtained from the simulation. 

From the result discussed so far we may conclude that: 
(a) the volume balance procedure is capable of predicting the evolution of the velocity 

field statistics. The good agreement between simulation and laboratory experiments shows 
that inclusion of the Leonard term, hence application of prefiltering, is not necessary for such 
an agreement. Recalling that inclusion of this term required a filter width larger than h, the 
success of the volume balance procedure shows that scales down to the mesh spacing h, as 
opposed to the filter width with prefiltering, can be resolved. 
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Figure 8. Shapes of initial velocity spectrum, 163 runs. Verti- 
cal scale arbitrary 
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Figure 9. @penden= of decay exponent n on initial spectra 
(Figure 8). A is the initial velocity Taylor microscale. 163 runs 
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Figure IOfa). Velocity scales of the W A  experi- 
ment. 163 and 3Z3 runs, - - filtered experi- 

mental integral scales, 0 and X simulation 

(b) the effects of the subgrid scales are successfully modelled by the Smogorinsky model in 
isotropic flows. The model parameter was found in agreement with Lilly's prediction and 
independent of the mesh size h. 

3.2. Prefiltering-role of each term in the equations 

For the range of scales in the CBC and W A  experiment a mesh size of h = 15 mm in 163 
grid-box runs is sufficient to simulate the field evolution, as shown in Section 3.1. Therefore 
investigation of the role of each term in the equations was done with 1fj3 runs and the initial 
field statistics of the CBC experiment at x/M = 42. 

I , 
u) 50 60 70 80 YO 'OD ''M 

Figure 10(b). Velocity scales from the simulation of the CBC experi- 
ment, 163 runs 
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First the molecular viscosity and Leonard terms were switched 'off and the model 
parameter was set equal to 0. The computation is then following the evolution of a field 
which obeys (10) and 

The finite difference approximation to aiq$/a+ is energy-conserving and therefore the 
energy was constant for all time steps. The spectral results are shown in Figure 11 where it 
can be seen that the convective term transfers energy, as it should, from small wavenumbers 
k to large ones, with a sharp cut-off at the maximum resolvable k. Bearing in mind that the 
only term additional to (39) in the equations of the previous section is the subgrid term, it is 
clear that the latter transfers energy from the high wavenumber part of the resolved scales to 
the subgrid scales, which is exactly what is meant to do. 

1M -: 

ECk) 

10 -: 

\' 

100 1 

10 - 

initial spectrum f i  

Pd P 

Figure 11. Effects of convective and Leonard 
terms. Results at 28th time step, (163 runs), X X X 
field of equation (39), OOo field of equation (a), 
IJCICJ honard term effect (subtracting X from 0) 
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The calculation was then repeated with exactly the same initial conditions and the Leonard 
term included with A,, = h and C = 0. The computation then follows the evolution of a field 
which obeys (10) and, 

The principal element in Leonard’s reasoning is that prefiltering should and would provide 
a substantial (more than 30 per cent) part of the energy transfer to the subgrid scales. In our 
runs the kinetic energy of the field obeying (40) remained practically constant with time. The 
contribution of the Leonard term to the drain of energy was also found negligible in the 
siniulation of Kwak et aL6 where a centred grid was used. Therefore its failure to provide 
significant energy drain cannot be attributed to the form of the computational grid. Indeed 
Leonard’s arguments do not in any way rely on that. Our spectral results are presented in 
Figure 11. Subtracting the spectral values of the field satisfying (40) from those of the field 
which obeys (39) (both at  the 28th time step) we get the effect of the Leonard term. It can be 
seen (Figure 11) that instead of this term draining energy to the SGS it backscatters energy 
from the large resolved wavenumbers to the small ones. Recalling that energy-conserving 4th 
and 2nd-order approximations were used for a&ii,/a%, this behaviour cannot be attributed to 
the numerical scheme used to approximate the convective term either. We tentatively 
suggest that the discrepancy between the theory of prefiltering and the results of the 
numerical experiments may well lie in the fact that the preliltering approach is attempting to 
predict the evolution of a continuous field, whilst the simulation is processing discrete 
configurations. 

Finally the effect of the molecular viscosity was investigated. Au terms in (11) were 
included apart from the Leonard term. The value of C matching the experimental decay was 
now found to be 0.22 rather than 0.23. The rate of dissipation by molecular viscosity 
within the resolved scales depends on the ratio q/h,  where q is the Kolrnogorov microscale. 
To estimate E,,,, we have used the dissipation spectrum proposed by Paol3 

D(k)  = 2vKo~v3k*’3 exp {-1-5K0(kq)4/3} 

where Ko=1.5 is Kolmogorov’s constant. This gives the fraction of the energy rate E~ 

dissipated by viscosity below wavenumber k as 

Ek 

E 
-= 1 - e ~ p { - 1 ~ 5 K ~ ( k q ) ~ ~ ~ }  

Leslie and QuariniI4 show that a finite difference scheme on a mesh of width h is equivalent 
to a sharp cut at a wavenumber 2*957/h. Thus Pao’s spectrum gives, 

E , ~ , / E  = 1 -exp {-9.5(q/h)4/3} (43) 
which for h = 15 mm and the CBC experiment (71 = 0.3) gives 

~~~~~~l E 4.9 per cent (44) 
Comparing the energy decay of the runs which include molecular viscosity to.rthose which do 
not, we obtained the fraction of E,, to the total rate of decay E,,, = dq/dt 

C,,v.rrs/Etotzl = 4.8 per cent (45) 
in agreement with (44). The fact that 5 per cent of 
consistent with the 5 per cent reduction of C, when molecular viscosity was included. 

is dissipated by molecular viscosity is 
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3.3. Pressure fluctuations 

Schumann and Patterson” integrated a discretized version of the Navier-Stokes equations 
without any SGS modelling at low Reynolds numbers using the spectral method of Orszag16 
to study pressure and velocity fluctuations in isotropic turbulence. Their initial velocity 
spectral shapes are those of (37) and (38). They quote ‘experimental’ values of the ratio 
( p2)”’/( u:), where the pressure fluctuations were derived from 2nd-order velocity correla- 
tions and the assumption of Gaussian velocity distribution. The ‘laboratory’ values, so 
derived, are about 0-7 which gives 

(p’)’’’/0.5(~~) -- 0.47 

Their computations gave (02)”2/(ii:) fluctuating with time around values ranging from 0.8 to 
1, i.e. 

(P2)”’/0*5(i i~)~ 0.53 to 0.66 (47) 
From their four runs they found the dependence of this ratio on the initial velocity spectrum 
to be small. 

The evolution of the 3-dimensional pressure spectra obtained from our simulation of the 
CBC experiment is presented in Figure 12. The variation with time of the normalized rms 
pressure is presented in Figure 13 where it can be seen that it is fluctuating with time around 
a mean of 

which is close to the ‘laboratory’ values and to those obtained by Schumann and Patterson. 
Similar results were obtained from the simulation of the W A  experiment. 

The dependence of the normalized rms pressure on initial velocity spectra and length 
scales was obtained from the results of the CBC and W A  simulation and the runs with the 
initial spectra of Figure 8. In Figure 14 this is plotted versus the initial Taylor microscales h 
of velocity. The numbering corresponds to that in Figure 8. It can be seen that the 
dependence of the rms pressure on initial velocity spectra is small, but there seems to be a 
trend for (p’)”’/( u:) to increase with increasing scales. 

4. CONCLUSIONS 

Two LES procedures were investigated. The volume balance procedure, applied on the 
staggered grid of H O W ,  was capable of predicting the evolution of the statistics of 
homogeneous isotropic turbulence experiments. It has been shown that the Leonard term is 
not necessary and the same is therefore true for prefiltering. This term instead of transferring 
kinetic energy to the subgrid scales, backscatters energy from the resolved large wavenum- 
bers to the small ones. 

An asymptotic decay with exponent n = 1.63 was reached by the simulation, but the 
proper ‘final period of decay’ with n = 2.5 cannot be reproduced with the coarse meshes to 
which we are at present limited, except at very low Reynoids numbers. The decay exponent 
n is shown to depend on the low wavenumber part of the initial velocity spectrum and a 
trend of increasing m with decreasing velocity Taylor microscaIes was observed. 

Pressure spectra were computed and the rms pressure normalized with kinetic energy was 
found to agree with previous computations. A trend for the normalized rms pressure to 
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Figure 14. Normalized RMS pressure for different 
initial velocity spectra (see Figure 8). ,i is the initial 

velocity Taylor microscale 

increase with increasing velocity scales was observed but its dependence on initial velocity 
spectra was found to be weak. 
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